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Abstract

There is a number of drugs demonstrating specific activity towards hereditary cancers. For example, tumors in BRCA1/2
mutation carriers usually arise via somatic inactivation of the remaining BRCA allele, which makes them particularly
sensitive to platinum-based drugs, PARP inhibitors (PARPi), mitomycin C, liposomal doxorubicin, etc. There are
several molecular assays for BRCA-ness, which permit to reveal BRCA-like phenocopies among sporadic tumors
and thus extend clinical indications for the use of BRCA-specific therapies. Retrospective data on high-dose
chemotherapy deserve consideration given some unexpected instances of cure from metastatic disease among
BRCA1/2-mutated patients. Hereditary non-polyposis colorectal cancer (HNPCC) is characterized by high-level
microsatellite instability (MSI-H), increased antigenicity and elevated expression of immunosuppressive molecules.
Recent clinical trial demonstrated tumor responses in HNPCC patients treated by the immune checkpoint
inhibitor pembrolizumab. There are successful clinical trials on the use of novel targeted agents for the treatment
or rare cancer syndromes, e.g. RET inhibitors for hereditary medullary thyroid cancer, mTOR inhibitors for tumors
arising in patients with tuberous sclerosis (TSC), and SMO inhibitors for basal-cell nevus syndrome. Germ-line mutation
tests will be increasingly used in the future for the choice of the optimal therapy, therefore turnaround time for these
laboratory procedures needs to be significantly reduced to ensure proper treatment planning.
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Background
First tumor-predisposing germ-line mutations were dis-
covered a quarter of century ago and were immediately
translated into appropriate diagnostic tests [1–5]. Identi-
fication of mutation carriers among cancer patients,
their yet healthy relatives and, to a lesser extent, some
other individuals rapidly entered clinical routine and
saved thousands of lives by delivering specific diagnostic
and preventive efforts to the subjects at-risk. However,
treatment schemes for hereditary and sporadic cancers
remained virtually identical until this decade, therefore
the genetic testing was usually considered rather as a
part of the follow-up than the component of the initial
decision-making process. We are currently witnessing a
cultural change in clinical perception of hereditary can-
cers. It is getting increasingly recognized that many

germ-line mutation-driven tumors develop via authentic
molecular pathways and therefore have a unique spectrum
of sensitivity to both conventional cytotoxic compounds
and novel targeted drugs [6–9]. Many doctors now re-
quest rapid genetic testing at the time of treatment plan-
ning, and these attitudes are likely to become mandatory
for the good clinical practice in a very near future. Here
we review recent advances and controversies in the ther-
apy of hereditary cancers (Table 1).

BRCA1 and BRCA2
Therapeutic window in BRCA-driven tumors
Breast-ovarian hereditary cancer syndrome is by far
more common than other categories of familial cancers,
with BRCA1 and BRCA2 being among the most studied
genes. BRCA1/2-driven tumors usually arise via 2-hit
mechanism: while the involved gene is present in hetero-
zygous but still proficient state in the normal cells of the
carrier, cancer cells are characterized by somatic loss of
the remaining BRCA allele and therefore demonstrate
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deficiency in DNA repair by homologous recombination
(HR). This opens an elegant therapeutic window by
making tumor cells specifically vulnerable to DNA dam-
aging drugs and poly(ADP-ribose) polymerase (PARP)
inhibitors (Fig. 1). For example, platinating drugs induce
DNA crosslinks, which cannot be effectively repaired in
the absence of HR. Similarly, PARP inhibition results in
accumulation of single-strand DNA breaks, which are
subsequently converted to double-strand DNA breaks
and turn out to be lethal for BRCA-deficient cells. This
concept was initially confirmed in various laboratory

studies and recently received validation in a series of
clinical investigations [10–13].

Platinum-based therapies
High sensitivity of BRCA1-driven tumors to cisplatin
was initially demonstrated in a small Polish neoadjuvant
breast cancer (BC) study involving mainly patients with
small tumors [14]. Given that the pathologic complete
response (pCR) was observed in 9 (90%) out of 10 in-
cluded women [14], cisplatin quickly became a popular
therapeutic option for hereditary BC in Poland. Recently

Table 1 Examples of cytotoxic and targeted drugs showing promising activity towards hereditary cancers

Hereditary cancer type Drug

BRCA1/2-driven cancers (breast, ovarian, prostate, pancreatic, stomach, etc.) Genotoxic agents: platinum compounds, PARP inhibitors, mitomycin C,
pegylated doxorubicin, etc.; high dose chemotherapy

Hereditary non-polyposis colorectal cancer Immune checkpoint inhibitors: pembrolizumab

Familial adenomatous polyposis Non-steroidal anti-inflammatory drugs (sulindac) and EGFR inhibitors
(erlotinib)

Tumors arising in patients with tuberous sclerosis (giant-cell astrocytomas,
angiomyolipomas)

mTOR inhibitors: everolimus

Tumors associated with the basal-cell nevus syndrome (basal-cell carcinomas,
keratocystic odontogenic tumors)

SMO inhibitors (vismodegib), COX2 inhibitors (celecoxib), antifungal
drugs with Hedgehog pathway inhibitory activity (itraconazole)

Hereditary medullary thyroid cancer RET inhibitors (vandetanib, cabozantinib)

Note: See the text for comments and references

Fig. 1 Selective sensitivity of BRCA1/2-associated tumors to genotoxic agents. Normal cells from BRCA1/2 mutation carriers retain full capacity of
genome maintenance mechanisms (left). Development of tumors in these patients involves somatic inactivation of the remaining BRCA1/2 allele,
therefore malignant cells are unable to cope with double-strand DNA breaks (right)
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Byrski et al. [15] reported an update on their experience
of using cisplatin in the neoadjuvant BC setting: pCR
was documented in 65/107 (61%) patients. Cisplatin ap-
pears to be clearly superior when compared to other
schemes of preoperative therapy in BRCA1 mutation
carriers [16, 17]. Furthermore, remarkable performance
of cisplatin in chemonaive BRCA1-related BC was con-
firmed in several independent reports [18–20]. The key
question is whether these high pCR rates will indeed
translate into improved long-term outcomes; pooled
analysis of neoadjuvant BC trials provides encouraging
information suggesting that the relationship between
pCR and survival is particularly strong in patients with
the triple-negative BC disease [21].
Data on the use of platinum compounds in metastatic

BC are limited. Byrski et al. [22] recruited both chemo-
naive and pretreated BRCA1 mutation carriers for cis-
platin study, and reported the response in 16/20 (80%)
cases with median progression-free survival (PFS) 12
months. Isakoff et al. [23] used either cisplatin or carbo-
platin in 11 patients with BRCA1/2-driven BC, most of
whom experienced prior chemotherapy; the response
was seen in 6 (54.5%) women, however its duration was
short (3.3 months). Tutt et al. [24] compared carboplatin
vs. docetaxel in triple-negative metastatic BC; for
BRCA1/2 mutation carriers, the response rates were
68% vs. 33%, and PFS was 6.8 months vs. 3.1 months.
There are several factors which critically compromise
the assessment of platinum compounds in women with
metastatic hereditary BC. First, the majority of patients
presenting with inoperable disease have a history of
prior chemotherapy; this is indeed an important con-
founding factor for BRCA-driven cancers, given that the
development of the drug resistance frequently involves
restoration of BRCA function [25]. Second, cisplatin and
carboplatin have distinct efficacy and therefore have to
be considered separately [26]. Third, there are multiple
ongoing trials on PARP inhibitors (PARPi); it is probable
that the cohort of patients receiving platinum therapy is
somehow enriched by women, who were not included in
PARPi studies due to contraindications or some other
reasons.
Platinum-based therapy forms a backbone for the stand-

ard systemic treatment of ovarian cancer (OC). Multiple
studies indicate that BRCA1/2-driven OC are character-
ized by increased sensitivity to platinating agents as
compared to sporadic carcinomas [27–30]. Interstudy
comparison of long-term results of the OC therapy is
complicated, because OC outcomes are significantly influ-
enced by the quality of cytoreductive surgery [31].

PARP inhibitors
There is a number of PARP inhibitors, including olaparib
(Lynparza, AstraZeneca), veliparib (ABT-888, AbbVie),

rucaparib (AG-014699, Clovis Oncology), niraparib (MK-
4827, Tesaro), talazoparib (BMN-673, BioMarin Pharma-
ceutical), etc. [13]. Iniparib (Sanofi) was also initially de-
veloped as a PARP inhibitor; however recent studies
showed that it has limited if any PARP-inhibiting activity
and therefore cannot be considered as a drug belonging to
PARPi class [32, 33].
Olaparib is the only PARP inhibitor already approved

for the clinical use. Its initial trial as monotherapy agent
demonstrated its preferential effect towards cancers aris-
ing in BRCA1/2 germ-line mutation carriers [34]. Subse-
quent study involving chemotherapy-pretreated ovarian
cancer patients revealed that the efficacy of olaparib is
more pronounced in women with platinum-sensitive dis-
ease and prolonged platinum-free interval [35]. Overall,
there is consistent evidence for activity of olaparib in
BRCA1/2-related cancers [36–41]. Olaparib received ac-
celerated approval from the Food and Drug Administra-
tion (FDA) for the use in patients with BRCA1/2-driven
ovarian cancers who received at least 3 prior lines of
chemotherapy. In addition, this compound was assessed
as a maintenance treatment in OC patients experiencing
response to platinum-based therapy; it prolonged PFS as
compared to placebo (11.2 vs. 4.3 months) in cases with
germ-line or somatic BRCA1/2 mutations, although
overall survival did not differ between these 2 arms [42].
Based on these data, olaparib is now approved for OC
maintenance therapy by the European Medicines Agency
(EMEA).
Given that neither olaparib nor conventional cytotoxic

compounds are capable to achieve high rate of pro-
longed complete responses while administered separ-
ately, there is some interest to the use of these drugs in
combination. Preclinical experiments support this con-
cept [43–45]. Combination of olaparib and carboplatin
has already been assessed in a Phase 1/1b study involv-
ing mixed population of patients with BRCA1/2 germ-
line mutations, however only 1 out of 42 evaluable
patients achieved complete response [46]. Another Phase
I study demonstrated reasonable tolerability of combining
olaparib with pegylated liposomal doxorubicin [47]. Oza
et al. [48] studied OC patients with recurrent platinum-
sensitive disease; while analyzing the subgroup of BRCA1/
2 germ-line mutation carriers, they revealed that addition
of olaparib to paclitaxel and carboplatin improved PFS as
compared to chemotherapy alone.
Only a few studies assessed the efficacy of olaparib

against standard cytotoxic treatment. Comparison of ola-
parib vs. pegylated liposomal doxorubicin (PLD) in re-
current BRCA1/2-associated ovarian cancer produced
similar results for both drugs [49]. It has to be men-
tioned that PLD showed noticeably higher activity in
BRCA1/2 mutation carriers as compared to historical
non-selected OC series [50].
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Data on the use of other PARP inhibitors are less ex-
tensive. Veliparib was evaluated in heavily pretreated
ovarian cancer patients with BRCA1/2 mutation, and in-
duced tumor responses in 13/50 (26%) women; similarly
to experience with olaparib, there was a clear difference in
response rates between platinum-resistant and platinum-
sensitive disease (20% vs. 35%) [51]. Niraparib was assessed
in a Phase I study; it demonstrated responses in 8/20
(40%) ovarian and 2/4 (50%) breast BRCA1/2-related can-
cers [52]. High disease control rates were also reported in
a rucaparib monotherapy trial [53].
It is important to acknowledge, that all published clin-

ical trials on PARP inhibitors involved pretreated BRCA1/
2-mutated patients. This could be a critical limitation, as
at least some BRCA1/2-driven tumors demonstrate res-
toration of intratumoral BRCA1/2 function during cyto-
toxic therapy [25, 29]. Low efficacy of PARPi in platinum-
resistant as compared to platinum-sensitive ovarian cancer
supports this assumption [51].

Other BRCA-specific therapies
In addition to cisplatin, there are several other non-
expensive cytotoxic drugs showing BRCA-specific activity
in preclinical experiments [6]. Based on these data, Moi-
seyenko et al. [54] administered single-agent mitomycin C
(10 mg/m2, every 4 weeks) to 12 heavily pretreated ovar-
ian cancer patients and obtained encouraging results:
there was 1 complete response, 2 partial responses and 6
instances of the disease stabilization.
Trabectedin (Yondelis, Janssen) is a novel DNA dam-

aging cytotoxic drug approved by FDA and EMEA for the
therapy of inoperable soft tissue sarcomas [55]. In addition,
it is used in some countries for the treatment of relapsed
ovarian cancer in combination with pegylated liposomal
doxorubicin [56]. It was assessed as a monotherapy in pre-
treated metastatic BRCA1/2-mutated breast cancer pa-
tients: 6/35 (17%) evaluable women experienced response,
and median PFS approached to 3.9 months [57]. Promising
activity of trabectedin was also shown in chemotherapy-
pretreated hereditary ovarian cancer patients, although
similar rates of tumor responses were observed in BRCA1/
2 mutation carriers vs. non-carriers [58].
Eribulin (Halaven, Eisai) is a novel microtubule inhibi-

tor, which demonstrated improvement of overall survival
in patients with metastatic breast cancer after failure of
multiple lines of systemic therapy. It was evaluated in
combination with carboplatin in neoadjuvant trial in-
volving triple-negative breast cancer patients. The study
included 3 patients with BRCA1/2 mutation; clinical re-
sponse was observed in all these women, with 2 of them
achieving pathologic complete response [59].
BRCA1 is required for the execution of taxane-induced

apoptosis, and at least some data indicate that taxane-
containing regimens show limited efficacy towards BRCA1-

associated breast cancers [16, 17, 60]. It is essential to ac-
knowledge that some breast cancer studies do not support
this concept [61]. Furthermore, paclitaxel monotherapy is
effective in relapsed ovarian cancer in BRCA1 mutation
carriers [62], although this study did not consider possible
restoration of BRCA1 function during the prior therapy
[25]. Recently Burness et al. [63] communicated 2 cases of
BRCA1-associated chemonaive breast cancers, which
demonstrated complete response to the paclitaxel mono-
therapy. These data deserve high level of attention, as they
clearly contradict to the current views on the mechanisms
of taxane action [7]. It is almost certain, that some aspects
of cytotoxic effects of taxanes still remain unrecognized,
however at least 2 reservations need to be kept in mind
with regard to the report of Burness et al. [63]. First, there
could be a publication bias, i.e. unexpected observations
have significantly better chances to be published than rou-
tine clinical experience. Second, somatic inactivation of
the wild-type BRCA1 allele may not be the only mechan-
ism of breast cancer development in BRCA1 mutation
carriers, as at least a subset of BRCA1-driven tumors ap-
pear to retain BRCA1 function [64, 65]; it is tempting to
speculate that the sensitivity to taxanes is preserved in the
latter category of BC.
Anthracyclines appear to exert substantial activity against

BRCA1/2-driven tumors [6, 16, 17], with the novel formu-
lations of these drugs producing remarkable responses in a
subset of patients [49, 66–68]. There are limited data on
the use of alkylating cytotoxic drugs in BRCA1/2-mutated
cancers [7]. Kummar et al. [69] recently investigated low-
dose daily cyclophosphamide in pretreated ovarian cancer
patients, and observed 1 complete and 6 partial responses
among 38 treated women.
There are some data on the activation of PTEN/PI3K/

AKT/mTOR pathway in cancers arising in BRCA muta-
tion carriers. Two mTOR inhibitors, temsirolimus and
everolimus, are already available for the clinical use,
however their performance in BRCA-driven cancers has
not been assessed yet in preclinical or clinical settings.
Recent studies demonstrate that mTOR down-regulation
may sensitize cancer cells to PARP inhibitors [70, 71].
There is also some interest to the evaluation of BRCA-
specific therapeutic potential of PI3K inhibitors [72–74].
BRCA1/2-deficient tumors are characterized by in-

creased mutational load and therefore appear to be more
antigenic than sporadic cancers. In accordance with this,
these cancers demonstrate increased lymphocyte infiltra-
tion and show distinct pattern of expression of immune-
related molecules [75, 76]. These data justify clinical tri-
als involving immune checkpoint inhibitors.

Rare types of BRCA-associated cancers
Carriers of BRCA1 and BRCA2 germ-line mutations
usually develop breast and/or ovarian cancers, however
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there is also some association with other cancer types.
Inherited BRCA2 heterozygosity is associated with ele-
vated prostate cancer risk. BRCA2-driven prostate can-
cers demonstrate good response to platinum-containing
therapy and PARP inhibitors [38, 77–79]. Similar experi-
ence is obtained with pancreatic cancer [6, 9, 38, 80]. It
remains under-recognized that some BRCA heterozygotes
develop gastric cancer; causal relationship with BRCA sta-
tus is supported by the evidence for tumor-specific inacti-
vation of the wild-type BRCA allele. BRCA1-related
stomach cancers are characterized by prolonged response
to platinum containing therapy [81].

BRCA-ness
Many sporadic tumors share biological characteristics
with BRCA1/2-associated hereditary cancers [82, 83].
For example, tumor-specific somatic inactivation of
BRCA1 is the frequent cause of BRCA-ness phenotype.
It may be manifested by the loss of BRCA1 expression,
caused by either BRCA1 promoter hypermethylation or
yet unknown reasons, or by mutational inactivation of
both alleles of BRCA1 [84, 85]. Disruption of other
genes belonging to HR pathway may also lead to similar
consequences [78].
While some “BRCA-ness assays” rely on the identifica-

tion of genetic causes of this phenotype, i.e. the detection
of biallelic inactivation of BRCA or similar genes, novel
generation of diagnostic tests utilizes characteristic muta-
tional pattern of BRCA1/2-driven (HR-deficient) tumors
[86–89]. For example, chromosomal instability results in a
specific tumor karyotype, which can be revealed by array
comparative genomic hybridization (aCGH) or some other
techniques [90, 91]. BRCA1/2-deficient tumors demon-
strate increased number of losses of heterozygosity (LOH)
of a certain size (more than 15Mb but less than the entire
chromosome) [92]. There is also a correlation between
BRCA1/2 deficiency and allelic imbalances at telomeres
[93]. Furthermore, BRCA1/2 inactivation manifests by
large-scale chromosomal rearrangements [94].
In addition to characteristic mutational signatures, HR-

deficient tumors demonstrate specific expression profiles
[95, 96]. Cells with functional HR form RAD51 foci after
DNA damage; there are attempts to establish ex vivo
tumor HR testing using the analysis of induced RAD51 re-
sponse [97].
Clinical data on the role of BRCA-ness demonstrate

high level of consistency. BRCA-ness phenotype is associ-
ated with higher tumor sensitivity to platinum-containing
agents and PARP inhibitors [23, 42, 78, 98, 99] and poor
response to taxane-containing regimens [100]. The discov-
ery of BRCA-ness (HR-ness) in a subset of sporadic tu-
mors significantly extends potential indications for the
drugs, which were initially considered to be active only in
BRCA1/2-related hereditary cancers [82, 83].

It is essential to acknowledge that the participation of
BRCA1 in DNA damage repair is not limited to HR,
therefore the definitions of BRCA-ness and HR-ness are
not necessarily identical. Hill et al. [101] studied triple-
negative breast cancer cell lines and revealed no major
HR defects. However, these cells exhibited deficiency in
the repair of stalled replication forks, yet another feature
of BRCA1 inactivation. Importantly, while the disruption
of HR is associated with sensitivity to both cisplatin and
PARPi, cells with abnormal repair of stalled replication
forks are more selective, i.e. they would respond to the
former but not to the latter [101]. These subtle differ-
ences may partially explain why there is no complete
cross-resistance between DNA damaging cytotoxic drugs
and PARP inhibitors [40, 51].

Mechanisms of resistance to BRCA-specific therapies
Most of disease-causing BRCA1/2 mutations are repre-
sented by relatively small alterations in DNA sequence,
which cause frame-shift or generation of premature
stop-codon. There is a series of fascinating reports,
which demonstrate a somatic restoration of the open
reading frame of BRCA genes in the therapy-resistant
tumor cells; this is achieved by the occurrence of the
second mutation in the proximity to the first one. As ex-
pected, second mutations are observed both in plat-
inum- and in PARPi-treated tumors [25, 102–108].
While the above mechanisms represent mutational

evolution of tumor genome under the pressure of
BRCA1/2-specific therapy, we observed a distinct root of
acquiring platinum resistance [29]. We analyzed somatic
BRCA1 status in hereditary ovarian cancers undergoing
short-term preoperative therapy (on average, 3 cycles of
platinum-containing cocktails given with 21-day inter-
vals). Astonishingly, while the chemonaive carcinomas
showed LOH characteristic for BRCA1-associated malig-
nancies, the wild-type allele was preserved in the re-
sidual tumor masses removed upon surgery. Given that
LOH is not an early event in BRCA1-driven tumorigen-
esis and that tumors from BRCA1 mutation carriers are
known to contain a fraction of cells with the intact wild-
type allele [109], this phenomenon can be explained by
rapid selection of preexisting BRCA1-proficient cells
during platinum exposure. The mere fact of selection of
treatment-resistant cells upon the therapy is not at all
surprising; what is indeed entirely unexpected, is the
speed of this transition. On the level of clinical measur-
ing of the changes in tumor size, the process of acquir-
ing drug resistance by initially chemosensitive tumors
usually takes several months; our data indicate that truly
responsive neoplastic cells die within very first weeks
(days?) of treatment, and they are rapidly replaced by
the clones with potentially chemorefractory phenotype
(Fig. 2). These data cast some doubt on the ideology of
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neoadjuvant treatment. Preoperative therapy is com-
monly viewed as a highly informative in vivo test for the
actual tumor sensitivity [110]. If pronounced reduction
of tumor burden is observed before the surgery, the
same schemes are often administered in the adjuvant
setting [111]. However, if the turnover of tumor cell
populations is indeed so rapid, and the surgically re-
moved cancer mass is biologically distinct from the ini-
tial malignancy, the rationale for continuing the same
therapy after the surgery may look questionable.
There are some other proposed mechanisms of the

resistance of BRCA1/2-mutated cells to the specific

therapy, such as inactivation of TP53BP1 protein, efflux
of platinum drugs or PARP inhibitors, or some other
molecular events [25, 112–115]. However, they were
demonstrated mainly in laboratory models, and their ac-
tual clinical relevance remains uncertain.

High-dose chemotherapy
High-dose chemotherapy followed by autologous
hematopoietic stem cell transplantation is used for the
treatment of germ-cell tumors, several hematological ma-
lignancies, childhood cancers etc. It was a popular experi-
mental approach for the treatment of breast cancer in mid

Fig. 2 The dynamics of distinct tumor cell populations upon systemic therapy. Many tumors respond well to the initial therapy; although the
existence of intratumoral cellular heterogeneity is widely acknowledged, it is generally believed that the evolution of treatment-resistant clones
requires additional genetic events and usually takes at least several months (left). Our data indicate that even short-term (neoadjuvant) exposure
of BRCA1-driven tumors to platinum therapy results in the replacement of tumor mass by BRCA1-proficient cells [29]. While cells with BRCA1 LOH
die almost immediately after beginning of the treatment, clones with retained BRCA1 continue to proliferate during platinum exposure and rapidly
repopulate the tumor lump (right)
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1990s, but failed to demonstrate improved long-term out-
comes in unselected BC patients [116–118]. However,
retrospective analysis of women with metastatic BC re-
vealed several instances of unexpectedly long remission of
the disease; importantly, these survivors are enriched by
BRCA1/2 germ-line mutation carriers, which is in good
agreement with the data on increased chemosensitivity of
BRCA-driven BC [119]. Furthermore, patients with
BRCA1-like stage III BC show substantial benefit from
adjuvant high-dose therapy [91, 120], and this effect
correlates with the molecular status of BRCA1-related
pathways [115]. There is also a number of case reports de-
scribing patients with germ-line BRCA1/2 mutations, who
were treated by high-dose chemotherapy for the metastatic
disease and remained tumor-free for years [121, 122].
Given that many BRCA1/2 mutation carriers are diag-
nosed with metastatic cancer at a relatively young age and
therefore retain sufficiently good health status to survive a
risky intervention, there is a rationale for considering
high-dose therapy trials for this uniquely chemosensitive
category of tumors.

Adverse effects of BRCA-specific therapy in the germ-line
mutation carriers: potential impact of haploinsufficiency
Although normal cells in BRCA1/2 mutation carriers re-
tain a wild-type copy of the involved gene and therefore
are able to cope with DNA damage, some experiments
suggest that the loss of even single BRCA1 allele results
in some decrease of BRCA1 functional capacity [123]. If
the data on BRCA haploinsufficiency are applicable to
the individuals with inherited BRCA defects, one may
expect distinct pattern and severity of adverse effects of
cancer therapy in the mutation carriers vs. non-carriers.
The majority of available clinical investigations did not
acknowledge unexpected adverse reactions [6, 22, 119],
which may be interpreted, with some caution, in favor of
normal tolerability of chemotherapy in BRCA1/2 muta-
tion carriers. Furthermore, systematic single-center ana-
lysis of BC patients receiving conventional cytotoxic
drugs did not reveal increased toxicity in BRCA1/2 het-
erozygotes vs. other women [124]. Nevertheless, Moon
et al. [125] observed increased incidence of hypersensi-
tivity reactions in BRCA1/2-mutated ovarian cancer pa-
tients receiving carboplatin and olaparib. There is also a
discussion whether therapeutic radiation is associated
with increased risk of induced cancers in BRCA1/2 het-
erozygotes [126, 127].

Novel types of hereditary breast cancer
While BRCA1/2-related cancers have been studied with
a high level of comprehension, the available information
on clinical behavior of novel categories of hereditary
breast cancer remains very limited. Importantly, BC aris-
ing in CHEK2, NBN/NBS1 and BLM heterozygotes

usually demonstrates retention of the wild-type allele in
the tumor, therefore there is no ground to expect select-
ive chemosensitivity in these tumor types [128]. In
agreement with mechanistic considerations, Chrisanthar
et al. [129] observed several instances of resistance of
CHEK2-associated BC to epirubicin. Pfeifer et al. [17]
described 8 CHEK2 mutation carriers receiving neo-
adjuvant therapy, with none of them achieving patho-
logic complete response; 4 out of these 8 women
experienced objective clinical response, however the
reduction of the tumor size was observed only in 1
out of 4 patients treated by anthracycline-based ther-
apy without taxanes. While data of Chrisanthar et al.
[129] and Pfeifer et al. [17] indicate relative chemore-
sistance of CHEK2-driven BC at least to anthracy-
clines, a large study of Kriege et al. [130] provided
conflicting evidence. The latter group described 62
CHEK2-mutated metastatic BC cases, and the re-
sponse rates to cytotoxic and endocrine therapy did
not differ between CHEK2 heterozygotes and
mutation-free controls [130].

Hereditary colon cancer
There are multiple types of hereditary colon cancer
[131], with the so-called hereditary non-polyposis colo-
rectal cancer (HNPCC) syndrome being the most stud-
ied type of this disease. HNPCC is caused by germ-line
mutations in DNA mismatch repair genes; HNPCC-
related tumors are characterized by a unique phenotypic
feature, i.e. high-level microsatellite instability (MSI-H).
It is beyond the doubt that MSI-H tumors have distinct
biological properties. In particular, they have increased
level of antigenicity due to accumulation of multiple
background mutations, and therefore are characterized
by a relatively good prognosis [132–134].
MSI-H carcinomas combine two distinct categories of

malignancies. First, there are hereditary cancers obtained
from the germ-line mutation carriers; they tend to be as-
sociated with younger age of the patients. Second, there
are sporadic MSI-H tumors; they often arise in elderly
subjects and frequently carry an actionable activating
mutation in BRAF oncogene. In addition to genuine bio-
logical diversity of MSI-H tumors, there are some debates
regarding technical aspects of MSI status determinations
[133–136]. Therefore, it is unclear to what extent the data
obtained on MSI-H cancers can be extrapolated to
HNPCC-related tumors.
High antigenicity of MSI-H tumors makes them

recognizable by the immune system. In order to over-
come host defense mechanisms, MSI-H carcinomas ex-
press some immune checkpoint molecules thus creating
local immunosuppressive environment [137]. Le et al.
[138] investigated pembrolizumab (Keytruda, Merck), an
antibody capable to inhibit PD1 pathway and thus
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restore peritumoral immune response, for the treatment
of MSI-H cancers. This antibody induced objective
tumor responses in all 6 patients with sporadic MSI-H
tumors, but only in 3 out of 11 patients with the
HNPCC syndrome; the reasons for these differences in
efficacy in sporadic vs. hereditary MSI-H cancers remain
obscure.
MSI-H tumors may have distinct spectrum of chemo-

sensitivity, which is critically influenced by the individual
pattern of somatically mutated genes [134, 136, 139].
There is an ongoing research aiming to develop synthetic
lethal strategy for the targeting of MSI-H cancers [140].
There are studies aimed to develop systemic therapy for

the familial adenomatous polyposis (FAP). Sulindac, a
non-steroidal anti-inflammatory drug, was shown to be ef-
fective against colorectal adenomatous polyps. However, it
has limited efficacy against duodenal carcinogenesis; duo-
denal carcinomas are the main cause of death in those
FAP patients, who have already undergone colectomy.
Synergistic interaction between COX2 and EGFR inhibi-
tors was observed in murine FAP models. Combination of
sulindac with erlotinib was assessed in a clinical trial in-
volving 46 FAP patients in the experimental group and 46
subjects treated by placebo. Use of the above drugs re-
sulted in clinically significant reduction of the number
and size of duodenal polyps [141].

Novel targeted agents for therapy of rare hereditary
cancers
Medullary thyroid cancer is often driven by inherited ac-
tivating mutation in RET oncogene. There are RET kin-
ase inhibitors, vandetanib (Caprelsa, AstraZeneca) and
cabozantinib (Cometriq, Exelixis), which demonstrate
clinical activity against both hereditary and sporadic me-
dullary thyroid carcinomas [142–145].
Everolimus (Afinitor, Novartis), an inhibitor of mTOR

kinase, has been approved for the treatment of several
tumor types. mTOR pathway is specifically activated in tu-
mors arising in patients with tuberous sclerosis (TSC).
Everolimus was systematically evaluated in TSC-related
giant-cell astrocytomas and angiomyolipomas, and showed
remarkable efficacy in these malignancies [146–148].
Vismodegib (Erivedge, Roche/Genentech) inhibits

Hedgehog pathway via interaction with SMO protein. Its
antitumor activity was examined in patients with basal-
cell nevus (Gorlin) syndrome [149]. This drug reduced
the size of existing basal-cell carcinomas and prevented
the appearance of new lesions; however, 14 out of 26
subjects decided to discontinue the treatment due to
adverse events. Vismodegib also showed some activity
against keratocystic odontogenic tumors arising in pa-
tients with Gorlin syndrome [150]. There is evidence that
this hereditary tumor disease may somehow be controlled
with some other drugs. For example, a COX2 inhibitor,

celecoxib slowed the increase of tumor burden in the
treated patients as compared to placebo control [151].
Well-known triazol antifungal drugs (itraconazole, ketoco-
nazole, posaconazole, etc.) turned out to have substantial
inhibitory activity against Hedgehog pathway [152, 153].
They are capable to induce regression of basal cell carcin-
omas at least in a subset of patients [154, 155].

Conclusions and perspectives
The number of known hereditary cancer syndromes will
rapidly grow within next several years, thanks to the in-
vention of whole exome sequencing [131]. Many of
already identified hereditary cancer types are represented
by exceptionally rare instances of the disease, and future
investigations are likely to reveal even more uncommon
cancer syndromes. In addition, unlike many other med-
ical conditions, genetic diseases are often population-
specific, i.e. their spread is limited by a few ethnic
groups. It is unrealistic to expect that each hereditary
cancer type will be subjected to systematic laboratory in-
vestigations and comprehensive clinical trials. There are
some approaches which may facilitate search for novel
treatment strategies for orphan and/or hereditary cancer
types. For instance, collection and analysis of biological
material from these patients deserve to be encouraged.
In addition, some ex vivo testing for tumor drug sensi-
tivity may turn out to be particularly practical in this
clinical setting [156]. There are also some bioinformatic
tools pretending to predict drug sensitivity of the tumor
based on its molecular characteristics [157]. Finally, sev-
eral potentially practice-changing investigations in this
field became possible due to availability of large clinical
databases [16, 27, 120]. Well-designed retrospective
studies may help to significantly improve the use of
existing cancer therapies.
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