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Abstract

Background: In the course of our whole-genome sequencing efforts, we have developed a pipeline for analyzing
germline genomes from Mendelian types of cancer pedigrees (familial cancer variant prioritization pipeline, FCVPP).

Results: The variant calling step distinguishes two types of genomic variants: single nucleotide variants (SNVs) and
indels, which undergo technical quality control. Mendelian types of variants are assumed to be rare and variants
with frequencies higher that 0.1 % are screened out using human 1000 Genomes (Phase 3) and non-TCGA ExAC
population data. Segregation in the pedigree allows variants to be present in affected family members and not in
old, unaffected ones. The effectiveness of variant segregation depends on the number and relatedness of the
family members: if over 5 third-degree (or more distant) relatives are available, the experience has shown that the
number of likely variants is reduced from many hundreds to a few tens. These are then subjected to bioinformatics
analysis, starting with the combined annotation dependent depletion (CADD) tool, which predicts the likelihood of
the variant being deleterious. Different sets of individual tools are used for further evaluation of the deleteriousness of

and diagnoses among the members need to be correct.

coding variants, 5" and 3" untranslated regions (UTRs), and intergenic variants.

Conlusions: The likelihood of success of the present genomic pipeline in finding novel high- or medium-penetrant
genes depends on many steps but first and foremost, the pedigree needs to be reasonably large and the assignments
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Background

The application of next-generation sequencing (NGS)
has hugely increased the number of detected somatic
mutations in human cancers. Even though NGS would
afford an advantageous technology also for germline se-
quencing, no boost in the number of new cancer predis-
posing genes has been evident. When Dr. Rahman
surveyed the discovery of 114 cancer predisposing genes
until year 2014, only 6 genes were reported to be found
by ‘genome-wide mutation analysis’ [1]. That review also
showed that the most successful period of finding pre-
disposing genes was the latter part of the 1990s when
family/pedigree-based linkage analysis was the main
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genetic approach. In fact, the few recent successes in
gene finding in the germline, such as NTHLI in colorec-
tal cancer or RECQL in breast cancer, were not
pedigree-based even though focusing on cancer families
[2, 3]. Family-based studies a priori are statistically more
powerful than those based on sporadic cases and they
may find known high-risk mutations but for novel rare
predisposing genes external validation would be needed
as shown in previous large studies on colorectal cancer
[4, 5]. The bottom line is that geneticists lost the interest
in family-based studies once these appeared not to lead
to new discoveries. However, the occurrence of rare can-
cers in multiple family members is hard to explain by
causes other than Mendelian inheritance. Examples that
family-based approaches work in the NGS era are the
detection of TERT promoter and POT1 mutations in
melanoma pedigrees, of POLE, POLD1 and FAN1 muta-
tions in colorectal cancer families, KDR mutations in
Hodgkin lymphoma families and of HABP2 mutations in
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nonmedullary thyroid cancer pedigrees [6—11]. However,
several authors have pointed out that the HABP2 variant
is a common polymorphism [12].

In the present article, we describe a gene identification
pipeline for germline mutations in cancer families with
the focus on pedigree and functional annotation data, fa-
milial cancer variant prioritization pipeline (FCVPP).
The advantage of the pedigree approach is that with a
decent number of affected and unaffected family mem-
bers the number of candidate mutations can be drastic-
ally reduced before feeding the data on in the distal
pipeline for evaluation of the likelihood for the variant
of being deleterious through functional annotation.

Methods

Whole-exome/genome sequencing and mapping
Whole-exome/genome sequencing for the cases and
controls from different families considered into the
current study was performed after DNA isolation from
blood samples using Illumina-based small read sequen-
cing. Mapping of reads to reference human genome (as-
sembly version Hs37d5) was performed using BWA [13]
and duplicates were removed using Picard (http://broad-
institute.github.io/picard/).

Variant calling and annotation

Variants were detected after mapping by using SAMtools
for single nucleotide variants (SNVs) [14] and Platypus for
indels [15]. Variants were annotated using ANNOVAR
[16], 1000 Genomes [17], dbSNP [18] and ExAC [19].

Variant filtering

Variants were filtered with the quality score greater than
20 and greater than 5x coverage. SNVs that passed the
strand bias filter (a minimum one read support from
both forward and reverse strand) and indels that passed
all the Platypus internal filters were evaluated further.
Minor allele frequencies (MAFs) were examined with re-
spect to the 1000 Genomes Phase 3 and non-TCGA ExAC
data [19]. We used 0.1 % MAF cut-off for rare variants de-
duced from these two datasets. A pairwise comparison of
shared rare variants among cohort was performed to
check for sample swaps and family relatedness.

Segregation in pedigrees

The variants were filtered separately in each family
based on the pedigree data by considering cancer pa-
tients as cases and unaffected persons as controls, and
by applying to each individual a probability consider-
ation for being a Mendelian case or a true control. How-
ever, as a rule of thumb was that a maximum number of
cases and a minimum number of controls in each family
must carry the variant.
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Variant ranking

We first ranked the variants using the combined annota-
tion dependent depletion (CADD) tool v1.3 [20]. Any
variant with the scaled PHRED CADD score of >10 be-
longs to top 10 % of probable functional variants and is
considered deleterious, while the top 1 % and top 0.1 %
variants will have CADD scores of >20 and >30, respect-
ively [20]. All variants with CADD score >10 were taken
into further consideration.

Conservational screening of variants

To evaluate evolutionary conservation of a particular
variant, two tools were used, the Genomic Evolutionary
Rate Profiling (GERP [21]) and the PhastCons [22]. The
GERP score of >2.0 and the PhastCons score of >0.3 indi-
cate a good level of conservation of the variants and these
scores were considered in the screening of variants.

Evaluation of deleterious nature of the coding variants
All missense variants were assessed for deleteriousness
using four tools, namely MutationTaster [23], PolyPhen
V2 [24], Provean [25] and SIFT [26]. These data were
gathered using dbNSFP [27]. Variants predicted to be
deleterious by at least three of these tools were analysed
further. Additionally, three different intolerance scores
were employed to evaluate intolerance of the genes against
functional mutations. These three intolerance scores were
derived from our in-house datasets and from the ESP [28]
and the ExAC [19].

Prediction of deleterious nature of the non-coding
variants

The regulatory nature and the possible functional effects of
non-coding variants were evaluated using CADD v1.3 [20],
HaploReg V4 [29] and Regulome DB [30], which are
based mainly on the ENCODE data [31]. For non-coding
regions variants from 127 cells from the NIH Roadmap
Epigenomics Mapping Consortium were accessed via
CADD v1.3 [20].

miRNA target prediction for the 3’ UTR variants

The miRanda tool was used for finding putative miRNA
targets among the 3" UTR variants; mirSVR score lower
than -0.1 is indicative of a “good” miRNA target [32].

Visualization of variants of interests

Variant positions were visualized in the human genome
using the Locuszoom [33], SNiPA [34] and the UCSC
genome browser [35].

Results

The a priori success of a pedigree-based study depends
on the number and type of the available samples from
family members and the population prevalence of the
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cancer under study, as for common cancers the likeli-
hood of phenocopies (individuals not sharing the
causative mutation) is higher than for rare cancers.
For assessment of the likelihood of Mendelian inherit-
ance, it is necessary to critically consider the pedigree
data, particularly regarding diagnostic accuracy. Can-
cers in each of several generations would be suggest-
ive of Mendelian inheritance. Samples from distant
relatives diagnosed with the same phenotype who
share a small proportion of their variants are more
powerful than those from close relatives diagnosed
with the same phenotype who share much of their
variants. Healthy non-carriers as controls are very
useful, particularly if they have passed the common
diagnostic age in the family. In practice, however, true
non-carriers are difficult to obtain because genetic
counseling firstly considers siblings and offspring of
index cases who are young for the cancer. Thus, the
pedigree data can often be divided to likely and prob-
able Mendelian cases and likely and probable non-
carriers, which needs to be considered in the analysis.
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It is even possible to apply formal linkage analysis
programs based on the NGS data.

Blood samples from members of families are often
collected over a long period and many persons from
various medical centers may be involved. For a start
of a sequencing project, it is necessary to have a
detailed pedigree with birth years, diagnostic years
and, for healthy individuals, the last medical contacts.
The complexities of data collection imply that errors
may occur. It is possible to verify the pedigree data
by analyzing genetic sharing of the individuals and
thus deduce their relatedness. As errors in pedigree
assignments may be fatal to the study, a simple check
on relatedness is more than worth the effort before
the sequence data enters the pipeline.

We show a pedigree of a colorectal cancer (CRC) family
that we have exome sequenced (Fig. 1). Samples were
available from 3 cases and 3 healthy individuals. The cases
were siblings and their paternal aunt. The CRC cases in
the family (marked ‘col’) numbered 8 and there were cases
in 3 generations so it qualified for a Mendelian family.

Age at diagnosis 83 y
> phenocopy?

1914 19p6

d74 d colvg70
45 46 29

1950 1957 1957 1941
br63 col61/d70 d57

O,

1959 1960
scopy_neg_2007

Parents not affected by CRC
> should not carry mutations?

1947/col52x2 1958 1943

» Case sequenced » Control sequenced

Fig. 1 A pedigree of a high-risk colorectal cancer (CRC) family for which the individuals with arrows were exome sequenced. The consideration
of cases as gene carriers and healthy individuals as non-carriers is shown in the text boxes and discussed in the text

1929

col35 polyps56-59-71 col70

S1, S3 and S4 are cases
(S3, S4 must have variants)
$2, S5 and S6 are controls
(only S5 allowed to have variants)
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However, the aunt (S1) was diagnosed at age 83 years
and in the analysis we considered the possibility that
she was a phenocopy. Among the healthy individuals,
S5 had had polyps on 3 occasions and as she had 3
first-degree relatives with CRC we considered possible
that she was a carrier. The parents and siblings of S2
and S6 had no CRC, we thus considered that they
were non-carriers.

Before describing the pipeline, we show in Table 1
what happened to the likely exonic and UTR variants
in the above family when the pipeline was applied.
After filtering for common variants (MAF <0.1 %)
and sequencing and mapping artifacts, 2920 missense
variants, 934 variants at 5’UTR and 5464 variants at
3UTR were identified. The pedigree data reduced the
number of missense variants to 257, and the further
functional annotation steps in the pipeline reduced
the number to 10. The reduction was also marked in
UTRs; the numbers in parenthesis in the last lines for
UTRs show the variant numbers if intolerance scores
are not considered.

The developed pipeline is shown in Fig. 2. The initial
part does not differ whether whole-exome or whole-
genome sequencing is done. The proximal pipeline starts
with technical parts, variant calling for single nucleotide
variants (SN'Vs), and indels followed by variant annota-
tion and filtering modules. Although we here focus on
SNVs and indels, our pipeline is also capable of handling
copy number variants (CNVs). Variant frequency data
are becoming quite covering for exon sequences (1000
Genomes, EVS 6500 and ExAC datasets) while even for
UTRs and more so for intronic and intergenic sequences
the data on variant frequencies are still sparse, and we
rely on 1000 Genomes and in-house controls.
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The main focus of the pipeline is on the use of pedigree
information and the functional annotation of the potential
causing variants in each pedigree. In the second step the
sequence data are adjusted based on the pedigree informa-
tion. The basic tenet is that all or most cases should
share the harmful variant which should be lacking from
controls. Depending on the number and type of family
members that were sampled the number of variants that
pass to the next step may decrease by a factor of 10 or
more (see Table 1). The remaining variants pass to
the first functional annotation step, the CADD analysis,
which gives a deleteriousness score based on a number
of commonly used in silico tools. CADD may be very
discriminatory for coding variants but may be less
powerful for UTRs and intergenic variants. This is due to
limited information available for non-coding regions of
the human genome.

After CADD the pipeline branches into 4 distal parts:
coding variants, 5" UTR, 3’ UTR and intergenic regions.
Each of these regions requires a different kind of analysis
and a thorough investigation of individual tools is taking
place. For coding variants several tools are able to predict
the deleterious nature of the variants. The analysis of UTR
and intergenic variants resorts to rapidly expanding data-
sets such as Haploreg [29], Regulome DB [30], miRanda
[32] and MicroSNiper [36]. The genomic environment of
the variants can be visualized by tools such as Locuszoom,
SNiPA or annotations available in the UCSC browser [35].
A short description of the available databases and their
addresses are given in Fig. 3.

At the distal end of the pipeline a successful gene finder
has a candidate or a few of them. We can search for con-
firmation in databases shown under ‘Potential variants’ in
Fig. 2. Comparison with the lists of cancer predisposing

Table 1 Reduction of exome sequence variants in the course of application of various conditions in the germline sequencing
pipeline. The numbers in parenthesis in the last line for UTRs show the variant numbers if intolerance scores are not considered

Private variants 2920 934 5464
Case/control 257 82 457
condition

CADD > 10 159 24 63
Rarity 42 16 43
ExAC

1000G

ESP_EUR

Residual intolerance 17 14 26
score <0 or NA

at least 2 tools

Deleterious 10

at least 3 tools

Final 10 14 (16) 26 (43)
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DNA sequencing, variant calling,

variant filtering and variant annotation

Variant segregation in the pedigree

Variant ranking
|__CADDV1.3 |

I-

Variant classification based on locations

5’UTR
EUENG

3’UTR
variants

Coding
variants

Intergenic
variants

Annotation tools

Variant visualization

Association/LD Regulatory nature
(Locuszoom, SNiPA) (UCSC genome browser)

Potential variants

« Cancer predispostion genes (Rahman N, Nature 2014)

 Clinically relevant variant (http://www.ncbi.nlm.nih.gov/clinvar/)

« RNA/protein expression in disease relevant tissue (BioGPS, Human Protein Atlas)
» Association with similar phenotype (Disease Gene Database, OMIM)

+ Somatic mutation (ICGC, Cosmic)

+ Manual recheck of sequencing data (IGV browser)

Fig. 2 Diagram of the germline sequencing pipeline showing the technical processes on top, followed by segregation in the family, variant

ranking and annotation tools based on the genomic locations of the variants
A

genes, clinically relevant variants or association with a
similar phenotype may help to identify the harmful vari-
ant. Information on somatic mutations may be useful for
germline data because there is an overlap in genes mani-
festing both somatic and germline variants.

essentially from 3 different sources: family studies which
have identified the majority of the known high-risk genes
(over 110 genes), genome-wide association studies
(GWASs) which have detected close to 400 low-
penetrance genes/loci and finally the analysis of GWAS
data for familial clustering, which has produced heritabil-

Discussion ity estimates [37]. The proportion of the 3 sources of data

The accumulating data on germline variation in various
cancers are able to explain between 15 and 50 % of the
known familial risks [37]. The genetic data derive

contributing to various cancers differs greatly. The germ-
line architecture of breast and ovarian cancer has a major
contribution from the high-risk genes while for prostate
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rCADD: Gives a score of deleteriousness of )

single nucleotide variants and insertion/deletion
variants in the human genome

http://cadd.gs. washington.edu/

\ J

PolyPhen-2: Possible impact of an amino acid
substitution on the structure and function of a
human protein
http://genetics.bwh.harvard.edu/pph2/index.shtml

\, J (PROVEAN : Impact of an amino acid )
substitution or indel
on the biological function of a protein
s N http://provean jcvi.org/index.php )
SIFT: Effect of an amino acid substitution on
protein function, based on multiple alignments
http://sift.jcvi.org/
\ J (HaploReg: Annotations of the noncoding )
HaploReg vd.A ﬂ genome at variants on haplotype blocks
- http://www.broadinstitute.org/mammals/haplo
fRegulome DB: DNA features and regulatory ) kre haploreg.ph J
elements in non-coding regions of the human RegulomeDB
genome ﬁ
htipJ//www.regulomedb.org/ Y, MicroSNiPer: Impact of a SNP on putative
microRNA targets
http://epicenter.ie-
freiburg.mpg.de/services/microsniper/
( miRanda - mirSVR: Genomic targets for h
microRNAs
http://www.microrna.org/microrna‘home.do
\_ J
tocusZoom LocusZoom: Regional association plots from
A Q genome-wide association scans
- ~N http://locuszoom.sph.umich.edu/locuszoom/
UCSC: Regulatory nature of the SNPs in all
known isoforms of the genes ‘ d
https://genome-euro.ucsc.edu/
. J

Fig. 3 Data content of the commonly used annotation tools and their access links

Mutation Taster: Disease-causing potential
of DNA sequence alterations
http://www.mutationtaster.org/

and lung cancer the major contribution is from low-risk
genes. GWAS estimates for heritability were strongest for
esophageal cancer (38 %, Asian population), prostate can-
cer (38 %), and testicular cancer (30 %) [37].

Several tools have been developed, which integrate the
pedigree information to the general sequencing pipeline
(Table 2). Most tools focus on WES, although some in-
clude tools for evaluation of the non-coding variants as
well [38]. Only one tool accounts for incomplete pene-
trance and locus heterogeneity [39]. The functionality of
the tools have been tested either using simulated pedi-
grees or pedigrees with known mutations.

Compared to the published tools, our pipeline takes into
account the reality of the genetic counseling practice: in-
complete family pedigrees. We consider the probability of
each available family member for being a Mendelian case
or a true control, separately for each family. Our pipeline
also allows analysis of non-coding variants using state-of-

art tools. Whether the present pipeline leads to a discovery
of cancer predisposition genes does not depend on the
pipeline itself but what is fed in, i.e., the pedigree data. The
numbers of true Mendelian cases is as critical as is the cor-
rectness of diagnoses. A false assignment of a phenocopy
as a Mendelian case or mixing of individuals or samples
may have devastating consequences for the analysis. The
quality of sequence data and sufficient coverage are im-
portant but not as crucial as for tumor DNA because many
family members are sequenced and the sequence data
should be identical between close relatives along large
chromosomal segments and even whole chromosomes.
We have been using the pipeline on genomic DNA but
NGS does work also on paraffin embedded material, the
use of which may not be as critical as it is for somatic se-
quencing for the above reasons.

Sooner or later comes also the ultimate question of func-
tional effects and mechanisms. Thus, the other important
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Table 2 Summary of tools for germline variant prioritization in pedigrees
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Tools

Details

References

Familial cancer variant
prioritization pipeline
(FCVPP)

VAR-MD

KGGSeq

Annotate-it

FAVR (Filtering and
Annotation of Variants
that are Rare)

PriVar

VariantDB

pVAAST (pedigree-Variant
Annotation, Analysis and
Search Tool)

FamAnn
(Family Annotation)

BiERapp
FamPipe

Gives guidelines for identification of disease causing variants based on segregation
in the family pedigrees of cancer and in silico predictions for deleteriousness of all
types of variants in whole-genome data. Evaluates each family individually based
on phenotype and sample availability from the family members.

Provides a ranked list of variants using Mendelian inheritance models, predicted
pathogenicity annotation based on evolutionary sequence conservation and allele
frequency data for small Mendelian-type of families with whole-exome data.

Combines gene (identity-by-descent, linkage, inheritance model), variant (allele
frequency, non-synonymous, disease-causing) and knowledge (protein-protein
interaction, biological pathway, phenotype) level information to prioritize exome
variants in disease families.

Integrates data of coding variants, genes and samples from different sources
providing filtering options for e.g. pedigree data.

After variant annotation, filtering for rare and likely deleterious coding variants
according to in silico tools; pedigree information is used at the end step.

After variant annotation, filtering for deleterious variants based on several in silico
tools, at the end different family-based criteria (e.g. linkage, inheritance model).

Integrates sample (e.g. family-based inheritance models) and variant (e.g. allele
frequency, pathogenicity and function) annotations from diverse tools and
provides gene and family/cohort based filtering possibilities.

A VAAST implementation for family-based data based on the composite likelihood
ratio test (CLRT,) combines linkage analysis, allele frequency differences for cases vs.
controls and phylogenetic conservation and biochemical function of the variant;
takes incomplete penetrance and locus heterogeneity into account. Gives a ranking
of genes/variants.

After variant annotation of whole-genome data uses pedigree data to provide
variants segregating in the family. Provides in silico predictions for deleteriousness
in excel format to user for further prioritization. No recommendations for
downstream prioritization strategies are provided.

Integrates pedigree information with in silico predictions for exome variants.

Provides annotation of variants shared by affected family members using

imputation identity-by-descent, linkage and disease model identification modules,
however requires user-provided data for population allele frequencies and functional
annotation of the variants for variant prioritization.

Current article

Sincan et. al. (2012) [41]

Liet. al. (2012) [42]

Sifrim et. al. (2013) [43]

Pope et. al. (2013) [44]

Zhang et. al. (2013) [45]

Vandeweyer et. al. (2014) [46]

Hu et. al. (2014) [39]

Yao et. al. (2014) [38]

Aleman etal. (2014) [47]
Chung et. al. (2016) [48]

point of the pipeline is the functional annotation of the po-
tential causal variants. As an initial filtering we use here
the CADD score, which combines data from different
sources. For different regions of the genome, i.e. coding re-
gions, 5’UTRs, 3’'UTRs and non-coding regions, consider-
ation of specific individual tools are important for the best
possible evaluation of the deleteriousness of the variants.
Finally, validation in other cancer families is warranted and
population frequencies of the variants need to be deter-
mined as well as the cancer risk conveyed by the risk allele.

In clinical oncology, familial cancer has attained a
prominent role because of the success in implementa-
tion of genetic testing and screening methods for known
rare, hereditary cancer syndromes [40]. For patients and
their family members family history may offer an explan-
ation, however, additional knowledge about a deleterious
mutation in a family may provide targeted prevention
opportunities for mutation carriers and relief of anxiety
for healthy family members. Our family-based WGS
pipeline provides a tool to reach this goal.

Conclusions

In summary, the present pipeline incorporates the pedi-
gree data and various state-of-art data to annotate the
variants and genes to find a causal cancer predisposition
gene. Both the coverage of the human genome data and
the biological understanding of its functional domains
increase with a great speed implying that the pipeline as
presented is continually updated to improve its perform-
ance. However, the critical bottleneck remains in the
availability of informative pedigrees.
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