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CDKN2A germline alterations and the
relevance of genotype-phenotype
associations in cancer predisposition
Sock Hoai Chan1, Jianbang Chiang1 and Joanne Ngeow1,2,3*

Abstract

Although CDKN2A is well-known as a susceptibility gene for melanoma and pancreatic cancer, germline variants
have also been anecdotally associated with a broader range of neoplasms including neural system tumors, head
and neck squamous cell carcinomas, breast carcinomas, as well as sarcomas. The CDKN2A gene encodes for two
distinct tumor suppressor proteins, p16INK4A and p14ARF, however, the independent association of germline
alterations affecting these two proteins with cancer is under-appreciated. Here, we reviewed CDKN2A germline
alterations reported among individuals and families with cancer in the literature, specifically addressing the cancer
phenotypes in relation to the molecular consequence on p16INK4A and p14ARF. While melanoma is observed to
associate with variants affecting both p16INK4A and p14ARF transcripts, it is noted that variants affecting p14ARF are
more frequently observed with a heterogenous range of cancers. Finally, we reflected on the implications of this
inferred genotype-phenotype association in clinical practice and proposed that clinical management of CDKN2A
germline variant carriers should involve dedicated cancer genetics services, with multidisciplinary input from various
healthcare professionals.
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Background
CDKN2A (cyclin dependent kinase inhibitor 2A, OMIM
600160) is a tumor suppressor gene that encodes for
two proteins, namely p16INK4A and p14ARF, critical for
the regulation of cell cycle pathways. Genetic and epi-
genetic alterations inactivating CDKN2A are fre-
quently encountered in a myriad of cancers, with base
sequence-altering events more common in cancer
types such as melanoma, head and neck squamous
cell carcinoma (HNSCC), pancreatic cancer, lung can-
cer, esophageal cancer, and glioblastoma multiforme
(GBM) [1–3]. Germline alterations in CDKN2A are

most frequently associated with predisposition to mel-
anoma and pancreatic cancer [4–8], detected through
gene-panel testing in about 38% of melanoma-prone
families [6, 9] but there have been sporadic reports
implicating susceptibility to other neoplasms such as
neural system tumors (NSTs), breast cancer, multiple
myeloma, HNSCC, and sarcoma [10–18]. It is plaus-
ible that the varying cancer types reported with
CDKN2A genetic alterations can be distinguished by
the different variant effects on p16INK4A and p14ARF,
although evidence to date are limited and conflicting
[12, 13, 16, 19–21]. Here, we reviewed the spectrum
of CDKN2A germline variants and associated neo-
plasms reported in literature, focusing on the relation-
ship between distinct variant consequences on
p16INK4A/p14ARF with the reported phenotypes. Vari-
ants evaluated include those detected in affected
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individuals through sequencing and/or classified as
pathogenic or likely pathogenic in ClinVar database
(version 2020-09-08, https://www.ncbi.nlm.nih.gov/
clinvar/) without conflicts in interpretation.

p16INK4A/p14ARF locus in the CDKN2A gene
The CDKN2A gene spans 27.5 kb on chromosome 9p21
and is associated with over 10 transcript variants, of
which the largest two encode for p16INK4A and p14ARF

[22]. p16INK4A is a 156 amino acid protein translated
from a transcript of three exons (exons 1α,2,3; RefSeq
NM_000077), known to negatively regulate cell cycle
progression through inhibition of cyclin-dependent ki-
nases [23]. The largest transcript produces p14ARF

(RefSeq NM_058195), a 132 amino acid protein,
encoded via an alternative open-reading frame and first
exon (exon 1β), with an established role of promoting
p53 function through sequestration of MDM2 [24]. Con-
sequently, p16INK4A and p14ARF are distinct proteins
with different roles and no sequence homology, sharing
only the use of same exons 2 and 3. Notably, although
both tumor suppressors are encoded by three exons of
similar size (exon1α: 421 bp, exon 1β: 486 bp, exon 2:
307 bp, exon 3: 490 bp), the bulk of translated sequence
is localized to exon 1α/1β and exon 2.

Spectrum of p16INK4A/p14ARF variants associated with
neoplasms
There are differences in molecular consequences of
CDKN2A variants reported in literature on p16INK4A and
p14ARF, which is expected given the use of different
open-reading frames. Most of the p16INK4A-affecting
variants are missense changes (28/55) followed by
protein-disrupting variants (20/55, including truncating
and null effects), occurring on exon1α and exon 2
(Table 1). In comparison, almost one-third of these re-
ported variants fall within intron 1 of p14ARF transcript
corresponding to exon1α of p16INK4A, followed by mis-
sense (16/62) and protein-disrupting (13/62) changes,
which are mostly concentrated in exon 2 of p14ARF. Due
to the difference in transcript architecture, there is an
overall higher likelihood of encountering variants out-
side of protein sequence-coding regions (e.g. intronic, 3-
prime untranslated region) in p14ARF compared to
p16INK4A.
Based on the distribution of reported neoplasms with

germline CDKN2A variants in Table 1, the association
with melanoma is evidently irrespective of variant conse-
quence on both p16INK4A and p14ARF. Variants affecting
p16INK4A coding transcript are more frequently observed
with pancreatic cancer and HNSCC (23/55) compared
to p14ARF (8/29). This association is supported by an
analysis of Dutch melanoma families demonstrating pan-
creatic cancer events in 58% of families with p16INK4A-

affecting variants but none among p14ARF-affecting car-
rier families [87]. Intriguingly, a broader spectrum of
cancers – e.g. uterine cancer, NSTs, GBM, non-
Hodgkin’s lymphoma – is noted to co-occur with
p14ARF-affecting variants. Moreover, variants with a loss-
of-function consequence exclusive to p14ARF, namely de-
letion of exon 1β, Glu33Glyfs*30 and Arg88*, were ob-
served in individuals with adenocarcinomas of uterus,
bladder and stomach, respectively. This apparent distinc-
tion of cancers observed with predicted loss either of
p16INK4A or p14ARF function is congruent with the inde-
pendent roles of both tumor suppressors in regulation of
cell cycle progression and p53 pathway. In particular,
the range of neoplasms co-occuring with p14ARF variants
is reminiscent of Li-Fraumeni syndrome, which is char-
acterized by constitutional mutations in TP53 and di-
minished p53 activity. Indeed, a dysregulated p53
pathway was observed exclusively in the malignant per-
ipheral nerve sheath tumor (MPNST) of a germline
CDKN2A deletion carrier diagnosed with synchronous
HNSCC and MPNST [16]. It is also noteworthy that
manifestations of neural system-related tumors such as
MPNST, GBM, astrocytoma, and schwannoma were
consistently reported together with families harbouring
gross deletion of the CDKN2A locus and/or involving
loss of an intact p14ARF [12, 13, 16, 62, 88], suggesting a
constitutional deficiency of p14ARF associated with
NSTs.
Collectively, these observed trends imply that

CDKN2A-associated cancer susceptibility could be
dependent on molecular consequence of the variant and
affected transcript. While inferring this genotype-
phenotype relationship is currently limited by the poten-
tial bias resulting from a p16INK4A-centric focus in
CDKN2A-related literature, an appreciation for this dis-
tinction in p16INK4A/p14ARF and larger case-cohort stud-
ies designed to address the causal effect of the specific
variants will provide clarity in the future.

Implications on clinical management
Presently, clinical genetic testing for CDKN2A is indi-
cated for individuals with multiple primary melanoma
and/or a family history of melanoma or pancreatic can-
cer [89]. However, the expanded spectrum of phenotype
accompanying germline alterations in CDKN2A suggests
that it may be relevant to consider CDKN2A as a candi-
date for tumor predisposition beyond melanoma and
pancreatic cancer in clinical practice. Indeed, numerous
carriers of pathogenic/likely pathogenic variants (P/LPV)
listed in Table 1 reported a variable family history of
cancers, including sarcoma, leukemia, lymphoma, astro-
cytoma and cancers of the breast, lung, and prostate. It
has been alluded that constitutional deficiency in
CDKN2A phenotypically mirrors the broad tumor
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spectrum characteristic of Li-Fraumeni syndrome [13,
16, 18, 90], hence clinicians and genetic professionals
should consider CDKN2A as a differential diagnosis for
cancers such as HNSCC, NSTs, breast cancer, and sar-
comas. One potential approach is to evaluate at-risk in-
dividuals with an assessment tool built upon a scoring
system that accounts for the spectrum of personal and
family history of cancers, such as one proposed tailored-
approach for clinical management of hereditary melan-
oma [91]. Additionally, it is important to be mindful that
identification of CDKN2A genetic alterations has been
historically restricted to the p16INK4A transcript, which
would exclude the alternative coding region specific to
p14ARF (i.e. exon 1β). This could result in missed diag-
noses especially for neoplasms potentially driven by
p14ARF deficiency, therefore it is imperative that genetic
professionals comprehensively interrogate for alterations
in both transcripts.
Current guidelines for clinicians managing individuals

tested positive for CDKN2A germline P/LPV are di-
rected towards surveillance for melanoma and pancreatic
cancer. Carriers are recommended to undergo bi-annual
comprehensive skin examination including scalp and
genitalia by a dermatologist, supplemented with total
body photography and dermoscopy [92, 93]. Earlier de-
tection of melanoma and non-melanoma skin cancers
have been demonstrated among carriers compliant to
surveillance [94, 95], although larger cohort studies will
be required to better evaluate the outcomes and factors
influencing successful melanoma screening. Annual pan-
creatic surveillance with contrast-enhanced magnetic
resonance imaging and/or endoscopic ultrasound is rec-
ommended for CDKN2A pathogenic variant carriers be-
ginning age 40 years regardless of family history given
their high lifetime risk [96] and emerging evidence sup-
porting the potential for downstaging and improved 5-
year overall survival [97–99]. Patients are also encour-
aged to adopt lifestyle modifications to reduce cancer
risk, including regular exercise, healthy diet, limiting al-
cohol intake, practicing sun-smart behaviour and smok-
ing cessation. Healthcare professionals caring for
CDKN2A carriers should have a heightened index of
suspicion for malignancies beyond melanoma and pan-
creatic cancer. Although there are currently no formal
recommendations for surveillance beyond melanoma
and pancreatic cancer, clinicians should monitor the
presentation of neoplasms within patients’ families and
consider individualized discussion on the risk and bene-
fit of screening, especially for prevalent cancers. Add-
itionally, at-risk family members should be offered
familial genetic testing given that up to 44% of relatives
of index patients carry the familial variant, of whom 96%
were observed to comply with surveillance [100]. Con-
sidering the broad range of management strategies, a

multidisciplinary approach to care through a centralized
cancer genetics service will benefit these patients [101].
With the rapid uptake of multigene panel testing in

clinical setting, new data will continuously re-frame our
understanding on the genotype-phenotype associations
relevant to CDKN2A. This is exemplified by a recent
analysis evaluating the clinical phenotype and molecular
results of hereditary cancer predisposition testing in 165,
000 individuals, which revealed an association of germ-
line CDKN2A pathogenic variants with increased risk for
breast cancer (odds ratio: 3.35, 95% CI: 1.43–7.75) [102].
Clinicians should keep abreast with the constant updates
given that this is an evolving field and that clinical man-
agement of individuals harbouring germline CDKN2A
variants will likely recalibrate with time.

Conclusion
Cancer susceptibility among germline variant carriers of
CDKN2A extend beyond the well-known predisposition
to melanoma and pancreatic cancer, potentially associ-
ated with a multitude of cancers. The spectrum of asso-
ciated cancer types may be driven by specific molecular
consequences on p16INK4A and/or p14ARF, warranting
validation in future studies. Clinicians and genetic pro-
fessionals should be cognizant of this expanded range of
phenotypes and consider CDKN2A as a candidate gene
for tumor predisposition syndrome in individuals and
families presenting with such broad spectrum of cancers.
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